Reactivity controlled compression ignition engine: Pathways towards commercial viability
نویسندگان
چکیده
Reactivity-controlled compression ignition (RCCI) is a promising energy conversion strategy to increase fuel efficiency and reduce nitrogen oxide (NOx) soot emissions through improved in-cylinder combustion process. Considering the significant amount of conducted research development on RCCI concept, majority work has been performed under steady-state conditions. However, most thermal propulsion systems in transportation applications require operation transient In it crucial investigate behavior over entire load conditions order minimize engine-out meet new real driving (RDE) legislation. This would help further close gap between implement concept into mass production. provides comprehensive review performance analyses engines with consideration effects vehicular applications. For this purpose, various simulation experimental studies have reviewed implementing different control strategies like control-oriented models particularly dual-mode operating addition, application hybrid electric vehicle platforms using renewable fuels also discussed. The discussion present paper important insights for future as commercially viable automotive
منابع مشابه
The effect of hydrogen and nitrogen addition on heavy duty diesel engine emissions under reactivity controlled compression ignition combustion
The aim of this study is to evaluate a heavy duty diesel engine operation under reactivity controlled compression ignition combustion fueled with diesel oil and natural gas enriched with hydrogen and nitrogen addition. In this study, a single cylinder heavy– duty diesel engine is set to operate at 9.4bar gross IMEP (Mid- Load). The amount of injected diesel oil per cycle into the engine combust...
متن کاملExperimental Investigation of Piston Heat Transfer in a Light Duty Engine Under Conventional Diesel, Homogeneous Charge Compression Ignition, and Reactivity Controlled Compression Ignition Combustion Regimes
An experimental study has been conducted to provide insight into heat transfer to the piston of a light-duty single-cylinder research engine under Conventional Diesel (CDC), Homogeneous Charge Compression Ignition (HCCI), and Reactivity Controlled Compression Ignition (RCCI) combustion regimes. Two fast-response surface thermocouples embedded in the piston top measured transient temperature. A ...
متن کاملNumerical Study of Reactivity Controlled Compression Ignition (RCCI) Combustion in a Heavy-Duty Diesel Engine Using 3D-CFD Coupled with Chemical Kinetics
In this paper, a numerical study is performed to provide the combustion and emission characteristics resulting from fuel-reactivity controlled compression ignition (RCCI) combustion mode in a heavy-duty, single-cylinder diesel engine with gasoline and diesel fuels. In RCCI strategy in-cylinder fuel blending is used to develop fuel reactivity gradients in the combustion chamber that result in a ...
متن کاملnumerical study of reactivity controlled compression ignition (rcci) combustion in a heavy-duty diesel engine using 3d-cfd coupled with chemical kinetics
in this paper, a numerical study is performed to provide the combustion and emission characteristics resulting from fuel-reactivity controlled compression ignition (rcci) combustion mode in a heavy-duty, single-cylinder diesel engine with gasoline and diesel fuels. in rcci strategy in-cylinder fuel blending is used to develop fuel reactivity gradients in the combustion chamber that result in a ...
متن کاملSimulation and Modelling of a Turbocharged Compression Ignition Engine
The increase in fuel price is constraining car manufacturers to produce highly efficient engines with more regulations in terms of pollutant emissions. The increasing complexity of modern engines has rendered the prototyping phase long and expensive. This is where engine modeling becomes in the recent years extremely useful and can be used as an indispensable tool when developing new engine con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Energy
سال: 2021
ISSN: ['0306-2619', '1872-9118']
DOI: https://doi.org/10.1016/j.apenergy.2020.116174